

Seah MP, Dench WA (1979) Surf Interface Anal 1:2Įrtl G, Küppers J (1985) Low energy electron and surface chemistry. Vaquila I, Passeggi MCG Jr, Ferron J (1996) Appl Surf Sci 93:247 Lee PA, Stork KE, Maschoff BL, Nebesny KW, Armstrong NR (1991) Surf Interface Anal 17:48 Satoh H, Nakane H, Adachi H (1996) Appl Surf Sci 94–95:247 Zaporozchenko V, Stepanova MG (1995) Prog Surf Sci 49:155 Kaufmann R, Klewe-Nebenius H, Moers H, Pfennig G, Jennet H, Ache HJ (1988) Surf Interface Anal 11:502 Nishino Y, Krauss AR, Lin Y, Gruen DM (1996) J Nucl Mater 228:346 Perkin-Elmer, Physical Electronics Division, Eden Prairie Moulder JF, Stickle WF, Sobol PE, Bomben KD, Chastain J (1992) Handbook of X-ray photoelectron spectroscopy. Macht M-P, Wei Q, Wanderka N, Sieber I, Deyneka N (2000) Mater Sci Forum 343–346:173 Liu L, Chan KC (2005) Appl Phys A Mater Sci Process 80:1737Įhmler H, Heesemann A, Rätzke K, Faupel F, Geyer U (1998) Phys Rev Lett 80:4919īusch R, Johnson WL (1998) Mater Sci Forum 269–272:577 Hsieh HH, Kai W, Huang RT, Pan MX, Nieh TG (2004) Intermetallics 12:1089
3d xps peak ratio Pc#
Kai W, Hseih HH, Chen YR, Wang YF, Dang PC (2007) Intermetallics 15:1459 Wong CH, Shek CH (2004) Intermetallics 12:1257ĭhawan A, Zaporojtchenko V, Faupel F, Sharma SK (2007) J Mater Sci 42:9037.

Kai W, Hsieh HH, Nieh TG, Kawamura Y (2002) Intermetallics 10:1265 Sharma SK, Strunskus T, Ladebusch H, Faupel F (2001) Mater Sci Eng A 304–306:747 Köster U, Triwikantoro (2001) Mater Sci Forum 360–362:29ĭhawan A, Raetzke K, Faupel F, Sharma SK (2001) Bull Mater Sci 24:101ĭhawan A, Raetzke K, Faupel F, Sharma SK (2003) Phys Status Solidi 199:431 Triwikantoro, Toma D, Meuris M, Koester U (1999) J Non-Cryst Solids 250–252:719 Kiene M, Strunskus T, Hasse G, Faupel F (1999) Mater Res Soc Symp Proc 554:167 Sun X, Schneider S, Geyer U, Johnson WL, Nicolet M-A (1996) J Mater Res 11:2738 Kluwer Academic Publishers, The Netherlands, p 317 Schneider S, Sun X, Nicolet M-A, Johnson WL (1995) In: Otooni MA (ed) Science and technology of rapid solidification and processsing. Song Z, Bao X, Wild U, Muhler M, Ertl G (1999) Appl Surf Sci 134:31 WALZ B, Oelhafen P, Güntherodt H-J, Baiker A (1989) Appl Surf Sci 37:337 Wang XK, Shen NF, Yang ZS, Gu HC (1995) J Mater Sci Lett 14:1742Īsami K, Kimura HM, Hashimoto K, Masumoto T (1995) Mater Trans JIM 36:988 Sen P, Sarma DD, Budhani RC, Chopra KL, Rao CNR (1984) J Phys F14:565 Yamashita H, Yoshikawa M, Funabiki T, Yoshida S (1987) J Chem Soc Faraday Trans 83:2883. Butterworths, London, p 471īaiker A, Schlögl R, Armbruster E, Güntherodt H-J (1987) J Catal 107:221. Hashimoto K (1983) In: Luborsky FE (ed) Amorphous metallic alloys. Peker A, Johnson WL (1993) Appl Phys Lett 63:2342. Zhang T, Inoue A, Masumoto T (1991) Mater Trans JIM 32:1505 The role of the dissolved carbon impurity in the reduction of the oxides is discussed. The results show a preferential oxidation of Be and Zr at room temperature, while at higher temperatures oxidation is controlled by the reduction of oxides of Zr and Ti and the diffusion of oxygen into the alloy bulk. Oxidation of Be was observed at all temperatures, while a sharp decrease in the oxidation of Zr and Ti was observed for temperatures at 573 K and above. High temperature in situ oxidation in the temperature range 423–653 K for a fixed oxygen dose of 300 L was also investigated. Progressive oxidation of Zr, Be and Ti was observed with increasing doses, the major species in the oxide layer being Zr(IV) and Be(II) possibly existing as ZrO 2, BeO, while Cu and Ni remained in their elemental forms. The initial stages of oxidation at room temperature were studied by exposing the clean alloy specimen surface to varying doses of pure oxygen (up to 1,000 L) in an UHV chamber. The surface oxidation behaviour of the bulk metallic glass Zr 46.75Ti 8.25Cu 7.5Ni 10Be 27.5 was investigated in situ by using X-ray photoelectron spectroscopy (XPS).
